Exam Seat No:__

C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name: Quantum Mechanics-1 Subject Code: 5SC01QUM1 Semester: 1 Date: 16/03/2019

Branch: M.Sc. (Physics) Time: 02:30 To 05:30

Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1 **Attempt the Following questions**

- a. Name the three parts in which the wave function of a hydrogen atom is resolved in terms of the spherical polar coordinates.
- **b.** What do you mean by perturbation?
- c. Give the statement of Variational Principle.
- **d.** Justify why hydrogen atom has been preferred to determine the wave function.
- e. Give the Rodrigue's formula for Laguerre's polynomials.
- State the normalization condition. f.
- g. What is the condition for the validity of WKB approximation method?

Q-2 Attempt all questions

Q-2

0-3

- Resolve the Schrodinger equation of hydrogen atom in terms of spherical polar a) (08) coordinates (r, θ , \emptyset).
- Normalize the solution of the Azimuthal part of the wave function of a hydrogen (06) b) atom and also prove that the quantum number m_1 takes values from -1 to +1.

OR

- Attempt all questions (14)Taking $v = x^n e^{-x}$; prove that Rodrigue's formula for Laguerre's polynomial leads (07) a) to the same polynomial. Prove that the Rodrigue's formula for Legendre polynomial leads to the same b) (07)
- polynomial. Attempt all questions (14)
- Using Perturbation Theory; derive the expressions for the first order correction to (09) a) Energy and Wave function.
- Determine the general expression for second order correction to energy. b) (05)

OR

Calculate the first order correction to the energy of the nth state of a harmonic Q-3 a) (05)oscillator whose centre of potential has been displaced from 0 to a distance 1. Name the electric analogue of Zeeman effect. (09) b)

(07)

(14)

Page 1 of 2

Using perturbation theory, solve a system exhibiting Zeeman effect.

CECTION II

		SECTION – II	
Q-4		Attempt the Following questions	(07)
	a	Name the approximation methods used to determine the wave function and energy of various systems quantum mechanically.	
	b	• Give an example where perturbation theory could be used.	
	c	What are classical turning points?	
	d	. Define tunneling.	
	e	Name the quantum numbers that are involved in spherical harmonics.	
	f.	The presence of which quantity in physics confirms the use of quantum mechanics?	
	g	. What do you mean by removal of degeneracy?	
Q-5		Attempt all questions	(14)
-		Find an upper bound for the ground state energy of a one dimensional harmonic oscillator whose Hamiltonian is given by $H = -\hbar^2/2m d^2/dx^2 + \frac{1}{2}m\omega^2x^2$	(14)
		OR	
Q-5		Based on the variational principle, find the expectation value of Hamiltonian <h></h>	(14)
		of a system given by $H = \frac{\hbar^2}{2m} \frac{d^2}{dx^2} - \alpha \delta(x)$	
Q-6		Attempt all questions	(14)
	a)	Explain the importance of connection formulae taking the example of a linear	(09)
		harmonic oscillator.	
	b)	Take Gamow's theory of alpha decay to explain the process of tunneling using	(05)
		WKB approximation	
		OR	
Q-6		Attempt all Questions	
	a)	Prove that the WKB method follows a semi classical treatment.	(05)
	b)	Determine the WKB solutions for a second order differential equation	(09)

 $d^2\psi/dx^2 + k^2\psi(x) = 0$; where k could be any continuous function. Explain the exponentially amplifying and decaying solutions.

